AI-assisted inspection of concrete surfaces at dams

Ephraim Friedli – Axpo Power AG

Stefan Schuhbäck – Verbund Hydro Power GmbH

vgbe / Verbund Expert Event Digitalization in Hydropower - Vienna 17./18. November 2022

Motivation

- Axpo and Verbund operate 48 large dams in Austria and Switzerland
 - First impounding: 1925 1986
 - Height of dams: 15 200 m
 - Reservoirs: 0.1 200 Mio. m³
- All dams are intensively monitored
 - → Visual Inspection is part of an extensive monitoring

Review - Expert Event 2021

Review - Expert Event 2021

First technology and field tests have proven:

- Potential to revolutionize current inspection methods
- Detection potential of >90%
- Further Al-improvements necessary

Progress since last year - What's new?

Further training of the detection-algorithm

- Selection of a high resolution image data set representing the characteristic concrete dam surfaces (129 images: 113 for training, 16 as test set)
- Additional classes: crack with efflorescence, joint
- Precise annotation of the abnormalities (pixel precise)

Evaluation criteria:

Intersection over Union (IoU) in combination with "ground truth damage"

Results of the improved AI

o☆oo Verbund INFRALYTICA Digitalization in Hydropower - Vienna 17./18. November 2022

Results of the improved AI

Results of the improved AI

Class	loU	True Positive	False Positive	False Negative	Recall
Crack	0.42	254	75	21	0.92
Efflorescence	0.66	48	5	7	0.87
Spalling	0.42	2	0	1	0.67
Total	0.50	304	80	29	0.91

Main sources of error / challenges:

- Insufficient resolution of images
- Sharpness, brightness of images

Evaluation of alternative imaging sensors

Evaluation of alternative imaging sensors

PhaseOne iXM-100

Sony Alpha 7R II

Evaluation of alternative imaging sensors

PhaseOne iXM-100

Sony Alpha 7R II

Alternative UAV-Positioning

First field tests have shown:

- Autonomous flights close to the dam (<20 m) are challenging reduced visibility of satellites
- Often a combination of autonomous and manual flights repeatability not ensured
 - ➡ Alternative approaches are required

Potential solution:

• Tracking and guidance of the UAV with a total station

Extension of dam surface inspection

- Air side
- Crown 🔻
- Water side 🗸

• What about the inside?

Surface documentation and inspection – goals:

- Identification of suited sensor / technology
- Identification of suited platform
- Automated data acquisition
- Automated detection of anomalies
- 3D-visualization and documentation

Investigated technologies

Terrestrial Laser Scanning

- Lidar
- IMU
- Range: 0.5 130m
- Range accuracy: 1mm + 10ppm

Leica RTC360

OXPO Verbund INFRALYTICA

- + 3D
- + Accuracy
- + Active System
- Price
- Static measurements

Mobile Laser Scanning

- LiDAR and visual SLAM
- IMU
- RGB Cameras
- Range: 0.5 -25 m

Leica BLK2Go

- + 3D+ Registered Scan & Trajectory
- + Active System
- Price
- Irregular point cloud

Time of Flight Cameras

- Intensity Images
- Accuracy: 0.3 6.0m: ± 10 mm
- Precision: <2mm at 1 m

DSLR Cameras

- RGB Video
- RGB Photos

Lucid Helios

- + 3D
- + Price
- + Active System
- Field of view (59° x 45°)
- No battery

Lumix DMC-FZ2000

- + Resolution
- + Price
- Passive System
- 2D
- Field of view

Digitalization in Hydropower - Vienna 17./18. November 2022

Investigated Platforms

Wheel based vehicles

- + heavy payload
- only for horizontal areas

Drones

- + vertical shafts accessible
- limited payload

Legged Robots

- + Payload
- vertical shafts not accessible

First results

Mobile scanning

- + quick
- resolution not sufficient

OXPO Verbund INFRALYTICA

DSLR

- + high resolution
- no scale and geo location

TOF Camera

- low resolution
- no geo location

Digitalization in Hydropower - Vienna 17./18. November 2022

Outlook – next steps

- Visualization of the detected anomalies in 3D model
- Implementation of the anomalies and 3D model in web platform
- Further investigations on the best platform for indoor applications
- Adaption of the AI-algorithm for indoor applications

Thank you for your attention!

Ephraim Friedli – Axpo Power AG Stefan Schuhbäck – Verbund Hydro Power GmbH